Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 330: 118197, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636579

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Alternanthera sessilis (L.) R. Br. ex DC., Eryngium foetidum L., and Stephania japonica (Thunb.) Miers plants are traditionally used to treat various central nervous system disorders like paralysis, epilepsy, seizure, convulsion, chronic pain, headache, sleep disturbances, sprain, and mental disorders. However, their possible neuroprotective effects have not been evaluated experimentally so far. AIM OF THE STUDY: The study aims to examine the neuroprotective potential of the three plants against cytotoxicity induced by rotenone in SH-SY5Y neuroblastoma cells and assess its plausible mechanisms of neuroprotection. MATERIALS AND METHODS: The antioxidant properties of the plant extracts were determined chemically by DPPH and ABTS assay methods. The cytotoxicity of rotenone and the cytoprotective activities of the extracts were evaluated using MTT assays. Microtubule-associated protein 2 (MAP2) expression studies in cells were performed to assess neuronal survival after rotenone and extract treatments. Mitochondrial membrane potential and intracellular levels of reactive oxygen species were evaluated using Rhodamine 123 and DCF-DA dye, respectively. Catalase, glutathione peroxidase, and superoxide dismutase activities were also measured. Apoptotic nuclei were examined using DAPI staining. Liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (LC-QTOF-MS) analysis of the plant extracts was also performed. RESULTS: The methanol extracts of A. sessilis, S. japonica, and E. foetidum showed excellent free radical scavenging activities. MAP2 expression studies show that A. sessilis and S. japonica have higher neuroprotective effects against rotenone-induced neurotoxicity in SH-SY5Y cells than E. foetidum. Pre-treating cells with the plant extracts reverses the rotenone-induced increase in intracellular ROS. The plant extracts could also restore the reduced mitochondrial membrane potential induced by rotenone treatment and reinstate rotenone-induced increases in catalase, glutathione peroxidase, and superoxide dismutase activities. All the extracts inhibited rotenone-induced changes in nuclear morphology and DNA condensation, an early event of cellular apoptosis. LC-QTOF-MS analysis of the plant extracts shows the presence of neuroprotective compounds. CONCLUSIONS: The plant extracts showed neuroprotective activities against rotenone-treated SH-SY5Y cells through antioxidant and anti-apoptotic mechanisms. These findings support the ethnopharmacological uses of these plants in treating neurological disorders. They probably are a good source of neuroprotective compounds that could be further explored to develop treatment strategies for neurodegenerative diseases like Parkinson's disease.

2.
Mol Biol Rep ; 50(3): 2893-2900, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36562936

RESUMO

BACKGROUND: Anti-tuberculosis drug-induced liver injury (AT-DILI) is one of the most common side effects in TB patients during treatment. The prime cause of liver injury during TB treatment is reported to be isoniazid and its metabolites. Different factors influenced the development of AT-DILI, and genetic factors are one of the major factors. METHODS AND RESULTS: Polymorphisms in drug metabolism genes like NAT2, CYP2E1, PXR, and GST have been reported to be associated with AT-DILI, and they are one of the major areas of focus at present. Attempts are met in this review to analyse the different markers in these drug metabolism genes for their association with AT-DILI. CONCLUSION: A better understanding of the polymorphisms in these genes and their functional effects will give better insights into the development of AT-DILI, and it could facilitate in designing and developing more effective personalized treatment for TB.


Assuntos
Arilamina N-Acetiltransferase , Doença Hepática Induzida por Substâncias e Drogas , Tuberculose , Humanos , Antituberculosos/efeitos adversos , Polimorfismo Genético/genética , Tuberculose/tratamento farmacológico , Tuberculose/genética , Fatores de Risco , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Arilamina N-Acetiltransferase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...